СВЕДЕНИЯ О ПРИЕМКЕ

Микросхема интегральная 164ИМ1 ВК соответствует техническим условиям АЕЯР.431200.203-41 ТУ и признана годной для эксплуатации.

Приняты по извещению №	OT
	дата
Штамп ОТК	Штамп представителя заказчик
Перепроверка произведена	
Приняты по извещению №	отдата

УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

Штамп представителя заказчика

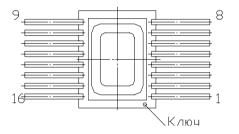
«ВНИМАНИЕ – Соблюдайте меры предосторожности при работе – ПРИБОРЫ, ЧУВСТВИТЕЛЬНЫЕ К СТАТИЧЕСКОМУ ЭЛЕКТРИЧЕСТВУ»

Штамп ОТК

Допустимое значение статического потенциала 200 В.

МИКРОСХЕМА 164ИМ1 ВК

Код ОКП: 6331322035


ЭТИКЕТКА

ЛСАР.430100.021-02 ЭТ

Микросхема интегральная 164ИМ1 BK – 4-х разрядный полный сумматор.

Шифр кода маркировки микросхемы 164ИД1 ВК –2КИД1 в соответствии с AEЯР.431200.203 ТУ.

Схема расположения выводов

Нумерация выводов показана условно. Ключ показывает начало отсчета выводов. Масса не более 1,7 г.

Таблица назначения выводов

тионици назни тенни выводов					
Обозначение	Назначение	Обозначение	Назначение		
вывода	вывода	вывода	вывода		
1	Вход А4	9	Вход Ро		
2	Вход В3	10	Выход S1		
3	Вход А3	11	Выход S2		
4	Вход В2	12	Выход S3		
5	Вход А2	13	Выход S4		
6	Вход В1	14	Выход Р		
7	Вход А1	15	Вход В4		
8	Общий GND	16	Питание U _{CC}		

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

при температуре (25610)^о С

Цамилиоромно напомотро		Цо	23.60
Наименование параметра,	Буквенное	Норма	
единица измерения,	обознаиение	не	не
режим измерения		менее	более
Выходное напряжение низкого уровня, В, при:	U_{OL}	-	0,5
U_{CC} =9,0B610%; U_{IL} =1,9B; U_{IH} =7,2B; R_{L} =390кОм			
Выходное напряжение высокого уровня, В, при:	U _{OH}	7,7	-
U_{CC} =9,0B610%; U_{IL} =1,9B; U_{IH} =7,2B; R_{L} =390кОм			
Входной ток низкого уровня, мкА,	I_{IL}	-0,05	-
при: U_{CC} =9,0B610%; U_{IL} = 0			
Входной ток высокого уровня, мкА,	I_{IH}	-	0,05
при: U_{CC} =9,0B610%; U_{IH} = U_{CC}			
Ток потребления выходного напряжения	I_{CCL}		
низкого уровня и высокого уровня, мкА, при: $U_{CC} = 9.0 \text{ B}610\%$; $U_{IH} = U_{CC}$; $U_{II} = 0$	I_{CCH}		
Occ 7,0 Bo1070, Olh Occ , Oll 0		-	10
Динамический ток потребления, мА,	I_{OCC}	-	0,8
при: U_{CC} =9,0 B; U_{IH} = 9,0 B; U_{IL} =0 B; f =100 к Γ ц;			
$C_L = 50 \; \Pi \Phi$			
Время задержки распространения сигнала при	$t_{ m PHL}$		
включении и выключении,нс, при: U _{CC} =9,0 B; U _{II} = 9,0 B; U _{II} = 0 B; C _I = 50 пФ	$t_{\scriptscriptstyle ext{PLH}}$		
- от входа суммы, входа переноса до			1.600
выхода суммы		-	1600
- от входа суммы до выхода переноса		-	500
 от входа переноса до выхода переноса 		-	300
	1	l	

Содержание драгоценных металлов в 1000 шт. микросхем:

- серебро

Цветных металлов не содержится.

надёжность

Минимальная наработка (Тнм) микросхемы в режимах и условиях, установленных в ТУ - 100000 ч, а в следующих облегченных режимах при: Ucc=9 B - 10%; C_L не более 25 пФ - 120000 ч.

Гамма-процентный ресурс (Тр γ) микросхемы при γ =95% 200000 ч Минимальный срок сохраняемости микросхемы (Тсм) при ее хранении:

- в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, 25 лет;
- в неотапливаемом хранилище 16,5 лет;
- под навесом и на открытой площадке, вмонтированными в аппаратуру (в составе незащищенного объекта), или в комплекте ЗИП 12,5 лет.

Срок сохраняемости исчисляется с даты изготовления, указанной на микросхеме.

ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям AEЯР.431200.203 - 41 ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и эксплуатации, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляется с даты изготовления, нанесенной на микросхеме.